Adapting the Multi-Desktop Paradigm
Towards a Multi-Context Interface

Sven Schwarz, Malte Kiesel, Ludger van Elst
DFKI GmbH, Kaiserslautern

MRC 2008
Delft, The Netherlands
9 June 2008
Overview

► Szenario
 - Knowledge work
 - Multi-tasking

► Approach
 - Apply Multi-Desktop Paradigm
 - Extensions to traditional Multi-Desktop

► Implementation

► Summary
Knowledge worker‘s (digital) work

► Basically, knowledge workers
 - work with documents
 - use office applications

► Particularly, knowledge workers
 - have to deal with multiple tasks “in parallel“
 - are often interrupted during work

► Task switching force workers to
 - stop current task
 ▪ close current documents/applications
 - start/resume another task
 ▪ open new/former documents/applications
Multi-tasking is expensive

- Tasks in parallel
 - tasks *never* finished
 - interleaved task execution
 - => halt + resume tasks

- Task switching overhead
 - halt + store current state:
 close windows, write note about state
 - remember/recall other task’s state:
 find folders, URLs
 - recover other state:
 open docs
 - resume other state

Goal: Reduce task switching overhead!
Overview

► Szenario
 - Knowledge work
 - Multi-tasking

► Approach
 - Apply Multi-Desktop Paradigm
 - Extensions to traditional Multi-Desktop

► Implementation

► Summary
Multi-desktop paradigm is a good start
Multiple desktops are used to organize daily work in 2 alternative ways:

1. **tool oriented:**
 each desktop provides a special set of applications to suite a special class of tasks
 - communication desktop: mail + chat
 - hacking desktop: eclipse, javadoc
 - music desktop: iTunes, …
 - news and web desktop: firefox

2. **task oriented:**
 each desktop contains the material and information needed to accomplish one specific task
 - booking trip to MRC’08 conference
 - preparing slides for MRC’08
 - designing and discussing Ralf’s dashboard
 - supervising diploma thesis Jan Haas
Overview

► Szenario
 - Knowledge work
 - Multi-tasking

► Approach
 - Apply Multi-Desktop Paradigm
 - Extensions to traditional Multi-Desktop

► Implementation

► Summary
Extensions to traditional Multi-Desktop

► Arbitrary, increasing amount of desktops
 - One (new) desktop for each (new) task => many desktops

► Meta-data for desktops
 - Annotate desktops with context information (automatically)

► Sophisticated user interfaces
 - Visualize / cluster / search / filter / switch desktops

► Persistent storage of desktop state
 - Store / restore application windows + open documents
Choosing and managing 1000s of desktops needs alternative interaction metaphors:

Clustering, indexing, searching for desktops gets necessary
Display and group differences of relevant desktops
Overview

► Szenario
 - Knowledge work
 - Multi-tasking

► Approach
 - Apply Multi-Desktop Paradigm
 - Extensions to traditional Multi-Desktop

► Implementation

► Summary
The PIMO (Personal Information Model) is a model of the user’s individual concepts of his knowledge world.

- **PIMO (Personal Information Model)**
 - Ontological model of the user’s world view
 - classes: Persons, Projects, Topics, …
 - instances of these classes

- **PIMO concepts are used to annotate desktops**
 - Context elicitation estimates for every PIMO concept its relevancy for the current context.
 - As each desktop has an assigned context, a desktop is described with contextually relevant PIMO concepts.

- **Tools to manage your PIMO**
 - soon: PIMO Editor http://pimoeditor.opendfki.de/
User observation feeds context elicitation

User Observation Hub

- userobservation.opendfki.de

- open-source platform used by multiple researchers
- one shared user action ontology
- distributes observed user actions to registered listeners
- collects data from multiple observation sources (extensible):
 - Mozilla plugins “Dragontalk” (DFKI): observe email + web browsing
 - File System Observer (DFKI)
 - PAS logger (L3S): observe window management
 - Real-Time Document Image Retrieval with LLAH (Osaka Prefecture University): recognize/observe a paper document with a web camera
Desktops are tagged automatically by user observation and context elicitation (desktop = context)
“MyDesk“ adapts the multi-desktop paradigm and realizes a context switching interface

http://mydesk.opendfki.de
Diploma thesis, Moritz Plößl

- Desktop switching (Windows, C#)
 → Visibility-Trick (Hide/Show)

- Timeline of desktops (like ALT+TAB)

- Manual 2-dim. layout of desktop

- Manual/autom. tagging of desktops

- Searching/filtering desktops

- Persistency of desktop state
 → Store/restore open windows
Problems (1)

- Versioning of documents is not yet supported
 - Only document’s location (URL) stored
 - Always the newest version is used
 - No problem with static documents (new=old version)

- Dynamic documents are problematic
 - The recovered application may show a newer version than last time!
 - This may or may not be what you expect!
Problems (2)

- Explicit context switching + explicit separation of contexts
 - makes things easy for context-sensitive assistance
 - helps humans to remember and resume former tasks
 ⇒ (+) removes some part of the context switching overhead
 ⇒ (−) does not remove all of the context switching overhead

- Very small tasks…
 - … with a typically execution time < 2 minutes …
 - Examples: email check, chat response, enter calendar entry
 - Spending an additional desktop does not make sense
 - The overhead for handling an additional desktop is too expensive
 - For these mini tasks, “implicit context“ calculus seems better
Evaluation of features

► Context Identification
 - Evaluation data: Log NOPs + context of NOPs (switches with MyDesk)
 - Hypothesis: context can be identified by context elicitation

► Context-Switch Detection
 - Evaluation data: Log NOPs + context switches (MyDesk)
 - Hypothesis: context switches can be detected by context elicitation

► Context-Similarity
 - Evaluation data: 2-dimensional desktop map (MyDesk)
 - Hypothesis: euclidian distance between desktop icons ≈ context similarity from context elicitation

► Context-Sensitive Tools
 - Evaluations: Ralf's Dashboard, ALOE, …

► Enhanced Multi-Desktop Paradigm (MyDesk)
 - Evaluation data: Log NOPs (close/open window op.) + context switches
 - Hypothesis: Some pairs of close-open NOPs become obsolete
Overview

► Szenario
 - Knowledge work
 - Multi-tasking

► Approach
 - Apply Multi-Desktop Paradigm
 - Extensions to traditional Multi-Desktop

► Implementation

► Summary
Summary

► Szenario
- Office worker, digital knowledge work
- Multiple tasks in parallel
 ▪ interruptions, task-switches
 ▪ resuming tasks requires remembering former task state

► Approach
- Apply Multi-Desktop Paradigm
 ▪ multiple virtual workspaces (desktops)
 ▪ switching tasks = switching desktops
 ▪ desktops carry information about task state (open docs)
- Extensions to traditional Multi-Desktop Paradigm
 ▪ arbitrary amount of desktops (1 desktop for each task)
 ▪ persistent storage of desktop state (store + restore)
 ▪ meta-data for desktops (automatically)
 ▪ sophisticated user interfaces
Adapting the Multi-Desktop Paradigm
Towards a Multi-Context Interface

Sven Schwarz, Malte Kiesel, Ludger van Elst
DFKI GmbH, Kaiserslautern

MRC 2008
Delft, The Netherlands
9 June 2008