
Linking Context Modelling and Contextual
Reasoning?

Dongpyo Hong, Hedda R. Schmidtke, Woontack Woo??

GIST U-VR Lab.
Gwangju 500-712, Korea

{dhong,schmidtk,wwoo}@gist.ac.kr

Abstract. In this paper, we discuss a novel perspective on ontology-
based context modelling that makes it easy to combine context models
and contextual reasoning mechanisms. On the context modelling side,
we outline our idea of a user-centric context model based on the six
fundamental context parameters of who, when, where, what, how, and
why (5W1H); on the contextual reasoning side, we introduce syntax and
semantics for a simple logical language and sketch a tableau mechanism
for reasoning. The model-theoretic semantics for this logical language
is like the context model based on the parameters of 5W1H. With the
common semantics, it is then easy to show the link between context
modelling and contextual reasoning.

1 Introduction

For any research on context-aware, intelligent computer systems, a fundamental
question is how to represent context. As perspectives of research and targeted
types of context-awareness differ, the specific properties of representations of
context also differ (cf. the range of perspectives surveyed in [3]). However, the
concept to be represented, that is context, is the same; and we can expect that
there are interfaces and mappings between different types of representations of
context. Thus, we present an approach to describe such an interface for the
example of a representation of context from the area of context modelling and a
representation of context from the area of contextual reasoning.

A definition of context that has been accepted widely in the area of context-
aware applications has been given by Dey and Abowd [6]: “Context is any infor-
mation that can be used to characterise the situation of an entity. An entity is
a person, place, or object that is considered relevant to the interaction between
a user and an application, including the user and applications themselves.” A
problem with this definition is that it does not differentiate between context
and information about context. A more recent definition by Bardram [1] better
reflects the fact that context exists outside a representation system: “ ‘Context’
? This research is supported by the UCN Project, the MIC 21st Century Frontier R&D

Program in Korea.
?? Corresponding author



refers to the physical and social situation in which computational devices are
embedded.” A context model can then be conceived of as a data model suitable
for storing information about the context of a certain interaction event.

Mobile context-aware computing has to cover issues of sensor reliability, ad
hoc network communication, software development support, reasoning and in-
ference, usability, and privacy management. Many of the main differences be-
tween approaches can accordingly be traced back to emphasis on one or the
other aspect, such as sensor-fusion in [21], networking in [20], and development
of context-aware applications in [11]. Most recently, ontology-based approaches
[22, 18, 9] have gained importance to answer the demands of heterogeneous ap-
plication environments. The key idea of ontology-based context modelling is that
applications using the context model also have to agree on a common ontology,
that is, a set of basic concepts defined in a formal language, which developers can
use to specify application specific concepts. Application concepts, being founded
upon the same basic concepts, can then be used for communication between
different applications.

When human beings reason or communicate about objects and events in the
environment, they usually abstract from certain aspects, and reason within a
context. When we reason about space, for instance, we may use to the West of
as a transitive relation (cf. the calculus in [15]). This assumption is valid as long
as we suppose a sufficiently small local area of context, as to the West of is
globally a cyclic relation: Denmark is to the West of Korea, Korea is to the West
of Canada, and Canada is to the West of Denmark; within the local context of
a city or country, in contrast, to the West of can be used in the same manner
as to the North of, i.e. as if it was a transitive, acyclic relation.

Research in contextual reasoning investigates how such locally valid theories
can be connected and how inferences can be made across context boundaries:
Benerecetti, Bouquet, and Ghidini [2] investigate the basic principles and tasks
of contextual reasoning. They use the metaphor of context as a box containing
the contextualised logical sentences together with a list of parameters and val-
ues for these. These parameters establish the link between the contextualised
sentences and the surrounding or neighbouring boxes. In [2], three dimensions
of context dependence are distinguished: contextualised representations can be
partial, approximative, or perspectival representations. The three dimensions of
context dependence can be illustrated with respect to the parameter of spatial
context: changing from a global to a partial view of space can be identified with
spatially focusing on a sufficiently small local area; a change of spatial perspec-
tive can be identified with a change of reference frames; and changing the degree
of approximativeness can be related to coarsening and refinement of spatial gran-
ularity. The focus of this article is on the aspect of partial representations.

The key idea of our research was to link a user-centric context model for
context-aware applications (Sect. 2), which can provide a system with access to
sensory information, and a logic-based contextual reasoning mechanism (Sect. 3)
with a common semantics that has its roots in six fundamental parameters of
context: both representations of context are understood as describing circum-



stances of a certain interaction as a proposition stating that someone (who)
interacts somehow (how) and for a certain reason (why) with something (what)
at a given time (when) and place (where). We sketch how contextual information
retrieved from sensors can be stored and accessed with the context model and
how information stored in the context model can be translated into the logical
language (Sect. 4).

2 User-centric Context Model

Regarding context model, there have been many research activities from artifi-
cial intelligence to mobile, ubiquitous, and pervasive computing. For instance,
Chen and Kotz [4] gave a survey of various definitions of context and its ap-
plications, particularly in the area of mobile computing. Dey and Abowd [6]
explored context from the area of context-aware computing. However, most con-
text models take an application centred perspective. From the perspective of
human-computer interactions in contrast, we are more interested in how con-
textual information is perceived by users rather than by devices, services, or
applications. Thus, we define context as user-centric context, that is, described
from the perspective of the user: User-centric context is represented as a se-
quence of explicit and implicit information that occurs in a user’s interactions
with applications.

Each sequence of the proposed context model consists of a set of WHO,
WHEN, WHERE, WHAT, HOW, and WHY (for short: 5W1H) which can pro-
vide the bridge into the ontology and thus into contextual reasoning (Sect. 3).
Sensory information, inferred information, and information entered by a user
are sorted accordingly into one of the six categories. Table 1 shows what each
category represents in a sequence. Explicit information is the user’s direct inputs

Table 1. Context categories

Category Description Examples

WHO Basic user information name, gender, birthday
WHEN Time time stamp, time of day, season
WHERE Location coordinate (x,y), place, region

WHAT Relevant objects
applications, services, commands (application de-
pendent)

HOW Ongoing processes
signals from sensors, e.g. current activity of the user
(sensor dependent)

WHY Users’ intentions stress, emotion, future events from a schedule

(e.g., from keyboard, mouse, pen) and signals from sensors (e.g., acceleration,
temperature, GPS). Implicit information is information inferred from explicit
information. In order to turn sensory raw data into information required by ser-
vices, they have to be accumulated, processed, and integrated [12]. According to



the state of processing, user-centric context can be categorised as preliminary,
integrated, and final context.

Preliminary Context (PC) stores primitive data from sensors and primitive
features from the data.

Integrated Context (IC) contains accumulated preliminary contexts and in-
ferred information, particularly from sensor-fusion.

Final Context (FC) is the context representation received from and sent to
applications. Both a user’s expectations (e.g., privacy concerns) and the ap-
plication’s demands for information have to be regarded whenever informa-
tion is sent to an application.

For example, explicit user input can be the birthday of the user like birthday =
x in the preliminary context. In the integrated context, it can be expressed as
age = f(x, d) where f() is a function for counting the number of years between
two dates or time stamps.

category: who
key: birthday
value: 1992.10.01

ContextElement

category: who
key: birthday
value: 1990.07.31

ContextElement

category: when
key: time
value: 2007/02/06/12:33:10

ContextElement

no: 1
content

Context

no: 2
content

Context

content
ContextMemory

no: 3
content

Context

category: who
controlability: protected
key: birthday
granularity: day
type: date-vector (y,m,d)
value: 1992.10.01

ContextElement

category: what
controlability: public
key: TV-program
granularity: channel
type: symbolic
value: educational

ContextElement

category: who
key: birthday
value: 1992.10.01

ContextElement

category: who
key: birthday
value: 1990.07.31

ContextElement

category: when
key: time
value: 2007/02/06/12:33:20

ContextElement

category: what
key: TV-program
value: educational

ContextElement

Fig. 1. Context objects (whether PC, IC, or FC) consist of context elements (here
simplified with detailed views for two examples) and are collected into context memory.

The proposed context model consists of three parts as follows (Fig. 1).

ContextElement is a basic type in the proposed context model and consists of
six attributes: category (one of 5W1H), controlability, key, granularity, type,
and value.



Context objects store all information available at a certain time and thus con-
tain a full description of a context as it is retrieved from sensors. The Context
class is implemented as a set of contextual elements. For accessing elements
in a context object, we can use the category together with the key.

ContextMemory stores context objects as long as they are necessary, because
context-aware applications might need to access not only current but also
previously collected contextual information. It is implemented as an ordered
collection based on time and provides different search facilities.

PC
(birthd., 
prefs)

user 
assist 
(on 

PDA)

time/
location
provider

PC
(time, 

location)

context-
integrat. IC

context-
mem. 

update

FC
(progr.)

TV 
service

Fig. 2. Context memory updates

Figure 2 illustrates the processing of context in our application framework [12]
for a simple example. Context objects (PC and FC) are produced from three
sources: a TV service provides information about the currently shown program;
the user assistant is a program running on users’ PDAs that provides information
about users to the environment according to privacy demands; thirdly, a local
beacon issues the name of its location and a time stamp signal. Since sensor fusion
mechanisms or handling of uncertainty are not necessary in this simple example,
context integration can simply unite all PCs it receives between two time stamps
into one integrated context object. Finally, the collected information is stored
in context memory. Figure 1 shows part of context memory in two consecutive
contexts: in context 1, two users are present, each disclosing information about
their birthday; in context 2 10s later, the same data about users is broadcast, but
additionally the TV service broadcasts that currently an educational program is
shown.

If we consider the context objects to be simply collections of pieces of in-
formation, the additional information from the category of 5W1H is only an
additional sorting criterion. The link into the ontology and thus to contextual
reasoning is only established if it makes a semantic difference to which category
a certain entry belongs. As an example, compare the who-element that contains
the birthday of a user with the when-element containing the current time in
Fig. 1. Above, we mentioned that the who-elements provide information about



who are the agents of an interaction event, whereas when-elements specify the
time of interaction. From a programming perspective, both context elements con-
tain values of date/time data type. Ontologically however, the birthday-element
must indicate users, and only the time-element specifies time. With set theo-
retical semantics we can realise this demand by stating that each who-element
describes a set of users – in the example: the set of users whose birthday is on
the given date – whereas the when-element describes a portion of time, i.e. a
set of time points. Given such a mapping of the data structures to standard
set-theoretical semantics, we can encode our ontology in a logical language in a
straight forward manner.

3 Reasoning about Context Objects

Ontologies support three major issues in the development of context-aware ubiq-
uitous computing applications [18]: discovery and matchmaking, interoperability,
and context-awareness. Ontology languages based on description logics (DL),
such as OWL (used, e.g., by [22, 9]), particularly support formulation of tax-
onomic knowledge, which is required for the first two tasks. Reasoning about
the classical domains of context, in particular space and time however, requires
additional expressive power. Other approaches to ontology-based context mod-
elling use first order logic [18, 9], or F-Logic [22] for additional expressiveness.
Ranganathan et. al [18] believe this need for more expressiveness to be caused
by space and time being quantitative domains. However, research in qualita-
tive reasoning has shown that space and time can be reasoned about efficiently
with qualitative representations [19], and that users are more comfortable with
qualitative than with quantitative interfaces to, e.g., spatial knowledge [7].

Qualitative spatial, temporal, and taxonomic knowledge has been handled
previously in separate specialised logical languages, and combined languages
are only recently being explored [13]. To see that it is not trivial to add, e.g.,
spatial relations into taxonomic knowledge consider the integration of the RCC-
relations [17] in SOUPA [5]: the formal specification1 expresses, for instance,
only that proper part and part are transitive relations, but not that part is a
reflexive relation and proper part is irreflexive; or that any proper part of a region
is also a part of that region. Moreover, the SOUPA specification of space2 adds
a relation spatiallySubsumes, which is supposed to provide spatial containment
reasoning [5, Sect. 3.1.5]. However, its relation to the RCC-relations, or whether
it is reflexive or irreflexive is not specified.

Following a similar approach as [13], we characterise a specialised logical
language that combines reasoning about the specific domains. Our main idea
for translating knowledge stored in the context model into a format suitable
for logical reasoning is to use context terms corresponding to the context objects
from the context modelling side as the atomic units for the logical language. Each
context object and therefore also each context term is understood as describing
1 http://pervasive.semanticweb.org/ont/2004/06/rcc
2 http://pervasive.semanticweb.org/ont/2004/06/space



circumstances of a certain interaction by a proposition stating that someone
(who) interacts somehow (how) and for a certain reason (why) with something
(what) at a given time (when) and place (where). To simplify the discussion, we
only present the logical framework for reasoning about four parameters of an
interaction, namely the spatial, temporal, object-related taxonomic, and agent-
related taxonomic parameters.

The syntax of the logical language is similar to that of a description logic.
In description logics we have two types of expressions: concepts and formulae,
where only concepts are recursively defined. Similarly, the logical language de-
fined in this paper consists of the recursively defined context terms, denoting
circumstances of an interaction, and formulae. The set of context terms is de-
fined based on a set of atomic context terms as the smallest set that fulfils:

1. All atomic context terms and the special symbols > (the maximal or trivial
context), and ⊥ (for the empty or impossible context) are context terms.

2. If c and d are context terms then the complement ¬c, the sum (c t d), and
the intersection (c u d) are also context terms.

In comparison to concepts in description logics, we currently do not allow con-
structions involving quantification. Instead, we encode some of the necessary
functionality into different operators for generating formulae out of context
terms. A context formula is formed from two context terms with one of five
operators: if c and d are context terms, then c v d, c vwho d, c vwhat d, c vwhen

d, c vwhere d are context formulae to be read as summarised in Tab. 2 below. A
contextual knowledge base (CKB) is defined as a set of context formulae.

We can now specify the semantics of this simple language. For representing
the four aspects, the domain of discourse consists of quadruples of subsets of
four distinct sub-domains: U = 2UA ×2UO ×2UT ×2US , where UA is the set of all
users, UO is the set of all objects, UT is the set of all temporal points, and US

is the set of all spatial points, i.e. the area of the domain. Any context term c
is interpreted as a quadruple 〈a, o, t, r〉 ∈ U corresponding to a sentence: “some
members of the group of agents a interact with some objects in o at a time in
t somewhere in the region r.” The interpretation function I maps the context
terms to elements of U . The special symbols > and ⊥ and the context term
operators are interpreted in the following way:

I(>) = 〈UA, UO, UT, US〉 and I(⊥) = 〈∅, ∅, ∅, ∅〉,
I(c u d) = and(I(c), I(d)), with and being the piecewise intersection:

and(〈a1, o1, t1, s1〉, 〈a2, o2, t2, s2〉) = 〈a1 ∩ a2, o1 ∩ o2, t1 ∩ t2, s1 ∩ s2〉
I(c t d) = or(I(c), I(d)), with or being the piecewise union:

or(〈a1, o1, t1, s1〉, 〈a2, o2, t2, s2〉) = 〈a1 ∪ a2, o1 ∪ o2, t1 ∪ t2, s1 ∪ s2〉
I(¬c) = comp(I(c)), where comp is the piecewise complement:

comp(〈a, o, t, s〉) = 〈(UA \ a), (UO \ o), (UT \ t), (US \ r), )〉

The basic relation underlying the semantics of the operators is the relation of
containment (⊂) as shown in Tab. 2. With the interpretation function I and the



Table 2. Syntax and semantics of operators. The semantics is given with respect to
two context terms c and d with I(c) = 〈ac, oc, tc, rc〉 and I(d) = 〈ad, od, td, rd〉.

Syntax Semantics Reading

c vwho d is true, iff ac ⊂ ad
c is socially a sub-context
of d

c vwhat d is true, iff oc ⊂ od
c is conceptually a
sub-context of d

c vwhen d is true, iff tc ⊂ td
c is temporally a
sub-context of d

c vwhere d is true, iff rc ⊂ rd
c is spatially a
sub-context of d

c v d
is true, iff ac ⊂ ad, oc ⊂ od,
tc ⊂ td, and rc ⊂ rd

c is a sub-context of d

domain U defined, entailment from CKBs can be derived in the standard way.
A structure 〈I, U〉 is a model for a formula φ, iff φ is true in 〈I, U〉. We obtain
five variants for the semantic concept of satisfiability: we call a context term
c spatially (temporally, conceptually, socially) satisfiable iff a structure 〈I, U〉
exists in which c vwhere ⊥ (c vwhen ⊥, c vwhat ⊥, c vwho ⊥) does not hold;
c is strongly satisfiable iff it is spatially, temporally, conceptually, and socially
satisfiable.

We suggest a simple tableau mechanism (cf. [8] for an introduction and
overview) for reasoning with CKBs. In order to ask a question, such as whether
c vwhere d holds in a CKB, we ask whether the context term (cu¬d) is spatially
unsatisfiable. More exactly, we ask whether q vwhere (cu¬d) entails q vwhere ⊥,
for an arbitrary new context term q (for query). We can then start the tableau
algorithm with the CKB and a set of query formulae as given in Tab. 3.

Table 3. Examples for questions to the CKB. The query context term q does not appear
anywhere else in the CKB. The formula c v d is expanded to {c vwhere d, c vwhen

d, c vwhat d, c vwho d}. Note that the semantic concept of satisfiability of a context
term cannot be expressed within the logical language itself, since negation of a formula
cannot be expressed.

Question Formula Negated Query Set Q

Is a context as described
by the term c satisfiable?

no positive
form

{q v c} expanded: {q vwhere c,
q vwhen c, q vwhat c, q vwho c}

Do the interactions of c
take place in the region
of d?

c vwhere d {q vwhere (c u ¬d)}

Do the interactions of c
involve objects of d?

c vwhat d {q vwhat (c u ¬d)}



The algorithm starts with the set T = {CKB ∪ Q} containing as the only
branch CKB ∪ Q. In every step, we expand a branch S ∈ T : we first check
whether S is a closed branch, that is, whether it contains for some operator vm,
either q vm ⊥, or both q vm c and q vm ¬c for some context term c. If S is
closed, it is removed from T . If T = ∅, the tableau is closed, and the query has
been proved. As long as there is still an open branch S ∈ T , we select a formula
φ from S and modify S according to the rules given in Tab. 4. In case of the
β-rules, we replace S with two branches. If a branch in T cannot be closed and
no rule is applicable, the query has been disproved.

Table 4. Simple rules for basic contextual reasoning. For each rule vm signifies one of
vwho,vwhere,vwhen,vwhat, so that we obtain a total of 4 ∗ 10 = 40 rules.

Name Input (φ in branch S) Output (S′ = S \ {φ})
q-intro c vm d (with c 6= q) S′ ∪ {q vm (¬c t d)}
⊥-elim q vm c t ⊥ S′ ∪ {q vm c}
⊥-abs q vm c u ⊥ S′ ∪ {q vm ⊥}
>-elim q vm c u > S′ ∪ {q vm c}
>-abs q vm c t > S′ ∪ {q vm >}
¬-elim q vm ¬¬c S′ ∪ {q vm c}
α-rule 1 q vm (c u d) S′ ∪ {q vm c, q vm d}
α-rule 2 q vm ¬(c t d) S′ ∪ {q vm ¬c, q vm ¬d}
β-rule 1 q vm (c t d) two branches S′ ∪ {q vm c} and S′ ∪ {q vm d}
β-rule 2 q vm ¬(c u d) two branches S′ ∪ {q vm ¬c} and S′ ∪ {q vm ¬d}

4 Discussion

With both the context model and the context reasoning mechanism described, we
can sketch how the two components can be linked. The proposed context model
provides us with the necessary data model to store and process sensory data in a
common format, in our approach the context elements. All data collected about
the same situation together yield the context object. We therefore can state
that the context object represents the situation as it is perceived by the system.
Contextual reasoning comes in, as these perceptions are assigned a meaning by
sorting them into the conceptual scheme provided by application ontologies: we
might, for instance, classify a certain range of sensory values from a physiological
sensor as signalling a critical health condition. With this classification we link the
perception into our representation of the world. When the percept is classified,
it becomes a new fact in the CKB.

Thus, we can compare the context model with a representation of perceptions,
whereas contextual reasoning handles representations of knowledge. The gap
between context modelling and contextual reasoning can then be identified as the
well-known grounding problem of how knowledge is anchored in perception [10].



Context modelling, designed to support the generation of more and more abstract
classifications – from preliminary context retrieved from sensors to integrated
context required for triggering services –, can be understood as an effort to
bridge this gap from the sensory or perceptual side.

Application ontologies can be encoded in our framework as consistent sets
of sentences, i.e., as axiomatic systems formulated in the logical language. They
form the static basis of the CKB in a running context-aware system. Additionally,
the context-aware system can dynamically expand the CKB with information
from the context objects. Every newly constructed context object, the current-
Context object, can be translated into a context term that can be sorted into
the (taxonomic, spatial, and temporal) hierarchies encoded in the CKB, in order
to be available for reasoning. Classification of context terms requires two steps,
first, algorithmic classification, a step of abstraction in context processing, and
second, ontology-based classification, using the reasoning mechanism. Consider,
for instance, a context-aware media centre in a smart home environment, such
as the ubiTV application [16].

Algorithmic classification In the first step, an application developer has to pro-
vide methods to convert collections of context elements into context terms, thus
assigning a meaning to them with respect to the semantics of the logical lan-
guage. What does it mean, for instance, if there are two context elements with
the birthday-key and different values in a context, as in Fig. 1 (p. 4)? Since the
elements are in the who-domain they have to be interpreted as denoting groups
of users. An interprperspicuousetation of this context object that makes sense is
to assume that the group of users in this context is contained in the set of all
persons whose birthday is on one of the two dates, i.e., as the union of the groups
of users described by each context element. The result of algorithmic classifica-
tion is a description of the current context in terms of the application ontology,
in the example, a classification of users according to age and of TV-programs
according to content might be relevant for the TV-application:

currContext vwho Teenager
currContext vwhat EducationalTVProgram

Ontology-based classification After algorithmic classification has been used to
generate a description of the situation in terms of the application ontology, we
can further reason about the situation within the logical framework. With the
following statements from an application ontology, for instance,

EducationalTVProgram vwhat TVProgram,

TVProgram vwhat NeedsSoundResource uNeedsPictureResource

the media centre can conclude that the current context requires sound resources

currContext vwhat NeedsSoundResource.



5 Conclusion and Future work

We discussed a novel perspective on ontology-based context modelling that
makes it easy to combine context models and contextual reasoning mechanisms.
On the context modelling side, we outlined our idea of user-centric context mod-
elling; on the contextual reasoning side, we introduced syntax and semantics for
a simple logical language. The expressiveness of this first, simple language does
not go beyond propositional logics and further extensions are a focus of ongo-
ing works. However, even this simple language already supports reasoning about
main parameters of context (who, when, where, what) in a unifying and perspic-
uous way, and is sufficient to encode, e.g., the location hierarchies proposed by
Leonhardt [14].

From the context modelling perspective, this paper illustrates how a logical
query language with a clear semantics can be used to provide contextual reason-
ing capabilities as well as model-theoretic semantics to a context model. From
the contextual reasoning side, the context model provides a way for grounding
knowledge-based reasoning about context in sensory or perceptual data about
the real world.

The paper provided only an overview of our approach. Details, e.g., regard-
ing how context integration is performed on the context modelling side, or the
proof of formal properties of the logical language have not been shown. However,
one of the key benefits of our approach to ontology-based context modelling is
that questions regarding completeness and soundness of the logical framework
can be asked and answered much easier and clearer than in the conventional
approach to ontology design based on DL/OWL; and even more so, since sev-
eral prominent approaches to ontology-based context modelling are formulated
using a combination of DL with more expressive logical languages. We conclude
that context-aware applications can benefit from specific context logics, and a
focus of ongoing works is the detailed investigation of more expressive logical
languages for specifying context ontologies. Among the desiderata are, particu-
larly, extensions for representing linear orders, such as the temporal before, in
order to move towards a fully-fledged contextual reasoning mechanism [2].

References

1. J. E. Bardram. The Java context awareness framework (JCAF) - a service infras-
tructure and programming framework for context-aware applications. In H.-W.
Gellersen, R. Want, and A. Schmidt, editors, Pervasive Computing, Third Inter-
national Conference, pages 98–115, 2005.

2. M. Benerecetti, P. Bouquet, and C. Ghidini. Contextual reasoning distilled. Journal
of Experimental and Theoretical Artificial Intelligence, 12(3):279–305, 2000.

3. P. Brézillon. Context in problem solving: A survey. The Knowledge Engineering
Review, 14(1):1–34, 1999.

4. G. Chen and D. Kotz. A survey of context-aware mobile computing research.
Technical Report TR2000-381, Dept. of Computer Science, Dartmouth College,
November 2000.



5. H. Chen, F. Perich, T. Finin, and A. Joshi. SOUPA: Standard ontology for ubiq-
uitous and pervasive applications. In First Annual International Conference on
Mobile and Ubiquitous Systems: Networking and Services, 2004.

6. A. K. Dey and G. D. Abowd. Towards a better understanding of context and
context-awareness. In Workshop on The What, Who, Where, When, and How of
Context-Awareness, 2000.

7. M. J. Egenhofer. Spatial SQL: A query and presentation language. IEEE Trans-
actions on Knowledge and Data Engineering, 6(1):86–95, 1994.

8. M. Fitting. First-Order Logic and Automated Theorem Proving. Springer, 1996.
9. T. Gu, H. K. Pung, and D. Q. Zhang. A service-oriented middleware for building

context-aware services. Journal of Network and Computer Applications, 28(1):1–
18, 2005.

10. S. Harnad. The symbol grounding problem. In Encyclopedia of Cognitive Science.
Macmillan and Nature Publishing Group, 2003.

11. K. Henricksen and J. Indulska. Developing context-aware pervasive computing
applications: Models and approach. Pervasive and Mobile Computing, 2:37–64,
2006.

12. D. Hong, Y. Suh, A. Choi, U. Rashid, and W. Woo. wear-UCAM: A toolkit
for mobile user interactions in smart environments. In Embedded and Ubiquitous
Computing, pages 1047–1057. Springer, 2006.

13. O. Kutz, C. Lutz, F. Wolter, and M. Zakharyaschev. E-connections of abstract
description systems. Artificial Intelligence, 156(1):1–73, 2004.

14. U. Leonhardt. Supporting Location Awareness in Open Distributed Systems. PhD
thesis, Imperial College, London, UK, 1998.

15. G. Ligozat. Reasoning about cardinal directions. Journal of Visual Languages and
Computing, 9:23–44, 1998.

16. Y. Oh, C. Shin, S. Jang, and W. Woo. ubi-UCAM 2.0: A unified context-aware
application model for ubiquitous computing environments. In UbiCNS, 2005.

17. D. Randell, Z. Cui, and A. Cohn. A spatial logic based on region and connection.
In Third International Conference on Knowledge Representation and Reasoning,
pages 165–176. Morgan Kaufmann, 1992.

18. A. Ranganathan, R. E. McGrath, R. H. Campbell, and M. D. Mickunas. Ontologies
in a pervasive computing environment. In Workshop on Ontologies and Distributed
Systems (part of IJCAI), 2003.

19. J. Renz. Qualitative spatial and temporal reasoning: Efficient algorithms for every-
one. In Twentieth International Joint Conference on Artificial Intelligence, pages
526–531, 2007.

20. B. N. Schilit, N. I. Adams, and R. Want. Context-aware computing applications.
In Workshop on Mobile Computing Systems and Applications, pages 85–90. IEEE
Computer Society, 1994.

21. A. Schmidt, M. Beigl, and H.-W. Gellersen. There is more to context than location.
Computers and Graphics, 23(6):893–901, 1999.

22. T. Strang, C. Linnhoff-Popien, and K. Frank. CoOL: A context ontology lan-
guage to enable contextual interoperability. In J.-B. Stefani, I. M. Demeure, and
D. Hagimont, editors, 4th International Conference on Distributed Applications
and Interoperable Systems, pages 236–247. Springer, 2003.


